B Solutions to Problems

Solution to Problem 1.

- Stages:

$$
t \leftrightarrow \begin{cases}\text { production run } t & \text { if } t=1,2,3 \\ \text { end of process } & \text { if } t=4\end{cases}
$$

- States:

$$
n \leftrightarrow \text { number of acceptable missiles left to produce for } n=0,1,2
$$

- Allowable decisions x_{t} at stage t and state n :
- Let x_{t} represent the number of missiles to produce in production run t
- At stages $t=1,2,3$ and states $n=0,1,2, x_{t}$ must satisfy:

$$
x_{t} \in\{0,1,2\}
$$

- Basic structure:
- I've included a sketch for every state/decision combination, so you can explicitly see what's going on.
- Edge labels represent (transition probability, contribution)

- In words, the value-to-go $f_{t}(n)$ at stage t and state n is the minimum total expected cost for production runs $t, t+1, \ldots, 3$ if we start with n missiles remaining to produce
- Value-to-go recursion:

$$
\begin{aligned}
& f_{t}(2)=\min \{\underbrace{f_{t+1}(2)}_{x_{t}=0} \underbrace{\frac{1}{3}\left(50+1(100)+f_{t+1}(2)\right)+\frac{2}{3}\left(50+1(100)+f_{t+1}(1)\right)}_{x_{t}=1}, \\
& \\
& \underbrace{\frac{1}{4}\left(50+2(100)+f_{t+1}(2)\right)+\frac{1}{2}\left(50+2(100)+f_{t+1}(1)\right)+\frac{1}{4}\left(50+2(100)+f_{t+1}(0)\right)}_{x_{t}=2}\} \\
& f_{t}(1) \min \{\underbrace{f_{t+1}(1)}_{x_{t}=0}, \underbrace{\frac{1}{3}\left(50+1(100)+f_{t+1}(1)\right)+\frac{2}{3}\left(50+1(100)+f_{t+1}(0)\right)}_{x_{t}=1}, \\
& \underbrace{\frac{1}{4}\left(50+2(100)+f_{t+1}(1)\right)+\left(\frac{1}{2}+\frac{1}{4}\right)\left(50+2(100)+f_{t+1}(0)\right)}_{x_{t}(0)}\} \\
& \underbrace{f_{t+1}(0)}_{x_{t}=2}, \underbrace{50+1(100)+f_{t+1}(0)}_{x_{t}=0}, \underbrace{50+2(100)+f_{t+1}(0)}_{x_{t}=2}\}
\end{aligned}
$$

- Boundary conditions:

$$
\begin{aligned}
f_{4}(2) & =25 \\
f_{4}(1) & =25 \\
f_{4}(0) & =0
\end{aligned}
$$

- Desired value-to-go function value: $f_{1}(2)$

Solution to Problem 2.

- Stages:

$$
t \leftrightarrow \begin{cases}\text { beginning of year } t & \text { if } t=1,2,3 \\ \text { end of process } & \text { if } t=4\end{cases}
$$

- States:
$n \leftrightarrow$ amount of money in account (in $\$$ millions) for $n=0,1, \ldots, 10$
($n=10$ corresponds to having $\$ 10$ million or greater in the account)
- Allowable decisions x_{t} at stage t and state n :
- Let x_{t} represent the investment chosen in year t
- At stages $t=1,2,3$ and states $n=0,1, \ldots, 10, x_{t}$ must satisfy:

$$
\begin{array}{ll}
x_{t} \in\{\mathrm{~A}, \mathrm{~B}, \text { no investment }\} & \text { for } n=5, \ldots, 10 \\
x_{t} \in\{\mathrm{~A}, \text { no investment }\} & \text { for } n=3,4 \\
x_{t} \in\{\text { no investment }\} & \text { for } n=0,1,2
\end{array}
$$

- Basic structure - transition probabilities and contributions:
- Arc labels represent (probability, contribution)

- In words, the value-to-go $f_{t}(n)$ at stage t and state n is the maximum probability of having at least $\$ 10$ million at the end of year 3 , with years $t, t+1, \ldots, 3$ remaining and starting with n million dollars to invest
- Value-to-go recursion: for $t=1,2,3$,

$$
f_{t}(n)=\max \{\underbrace{0.5 f_{t+1}(\min \{n+2,10\})+0.5 f_{t+1}(n-2)}_{x_{t}=\mathrm{A}},
$$

$$
\begin{aligned}
& \underbrace{0.1 f_{t+1}(\min \{n+3,10\})+0.9 f_{t+1}(n-1)}_{x_{t}=\mathrm{B}}, \underbrace{1 f_{t+1}(n)}_{x_{t}=\text { =no inv. }}\} \text { for } n=5, \ldots, 10 \\
& f_{t}(n)=\max \{\underbrace{0.5 f_{t+1}(\min \{n+2,10\})+0.5 f_{t+1}(n-2)}_{x_{t}=\mathrm{A}}, \underbrace{1 f_{t+1}(n)}_{x_{t}=\text { no inv. }}\} \text { for } n=3,4 \\
& f_{t}(n)=\max \{\underbrace{1 f_{t+1}(n)}_{x_{t}=\text { no inv. }}\} \text { for } n=0,1,2
\end{aligned}
$$

- Boundary conditions:

$$
f_{4}(n)=0 \quad \text { for } n=0,1, \ldots, 9 \quad f_{4}(10)=1
$$

- Desired value-to-go function value: $f_{1}(4)$

