B Solutions to Problems

Solution to Problem 1.

e Stages:

productionrun ¢t ift=1,2,3
end of process ift=4

e States:
n <> number of acceptable missiles left to produce forn =0,1,2

o Allowable decisions x; at stage ¢ and state n:

o Let x; represent the number of missiles to produce in production run ¢

o Atstages t =1,2,3 and states n = 0,1, 2, x; must satisfy:
Xt € {0, 1, 2}
e Basic structure:

o I've included a sketch for every state/decision combination, so you can explicitly see what’s going on.

o Edge labels represent (transition probability, contribution)
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e In words, the value-to-go f;(n) at stage ¢ and state n is the minimum total expected cost for production runs
t,t+1,...,3if we start with n missiles remaining to produce

e Value-to-go recursion:
f(2) = min{fm(z), %(50 +1(100) + fr1(2)) + %(50 +1(100) + f141(1)),

—
JC[:()

xr=1

i(so +2(100) + f41(2)) + %(50 +2(100) + fr1(1)) + i(so +2(100) + f;41(0)) }

fi(1) = min{fm(l), %(50 +1(100) + fi1(1)) + %(50 +1(100) + f141(0)),
xt=0 -

i(so +2(100) + fr1(1)) + (% + i)(50 +2(100) + f,41(0)) }

f:(0) = min{le(O),SO +1(100) + f;11(0),50 + 2(100) + f;+1(0) }
x¢=0 x¢=1 x¢=2
e Boundary conditions:
f1(2) =25
fa(1) =25
f4(0) =0

e Desired value-to-go function value: f;(2)
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Solution to Problem 2.

e Stages:
{beginning ofyeart ift=1,2,3
t <

end of process ift=4
e States:

n <> amount of money in account (in $ millions) forn =0,1,...,10
(n =10 corresponds to having $10 million or greater in the account)
e Allowable decisions x; at stage ¢ and state n:

o Let x; represent the investment chosen in year ¢

o Atstagest =1,2,3 and states n = 0,1,...,10, x; must satisfy:

xt € {A, B, no investment} forn=5,...,10
x¢ € {A, no investment} forn=3,4

x; € {no investment} forn=0,1,2

e Basic structure - transition probabilities and contributions:

o Arc labels represent (probability, contribution)
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e In words, the value-to-go f;(n) at stage ¢ and state # is the maximum probability of having at least $10 million at
the end of year 3, with years ¢, ¢ +1,.. ., 3 remaining and starting with » million dollars to invest

e Value-to-go recursion: for t = 1,2, 3,

fi(n) = maX{O.Sle(min{n +2,10}) + 0.5 fr11(n - 2),

Xt=A
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0.1fp1(min{n +3,10}) + 0.9 fr41(n — 1), 1f111(n) } forn=>5,...,10

—_——
xt=B X¢=no inv.
fi(n) = maX{O.Sle(min{n +2,10}) + 0.5 fr11(n = 2),1f1(n) } forn=3,4
—_——
xt=A X¢=no inv.
fi(n) = max{lfm(n) } forn=0,1,2
———
Xt=no inv.

e Boundary conditions:
fa(n)=0 forn=0,1,...,9 f1(10) =1

e Desired value-to-go function value: f;(4)
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